Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management.

نویسندگان

  • Yu B Gaididei
  • P L Christiansen
چکیده

We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three kinds are found: periodic Ising states and two types of Bloch states, staggered and unstaggered. The stability of these states is investigated analytically and numerically. The nonlinear dynamics of the Bloch states are described by a complex Ginzburg-Landau equation with linear and nonlinear parametric driving. The switching between the staggered and unstaggered Bloch states under the action of direct ac forces is shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hysteretic nonequilibrium Ising-Bloch transition.

We show that a parametrically driven cubic-quintic complex Ginzburg-Landau equation exhibits a hysteretic nonequilibrium Ising-Bloch transition for large enough quintic nonlinearity. These results help to understand the recent experimental observation of this phenomenon [A. Esteban-Martín, Phys. Rev. Lett. 94, 223903 (2005)].

متن کامل

Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation.

The parametrically driven Ginsburg-Landau equation has well-known stationary solutions-the so-called Bloch and Ne el, or Ising, walls. In this paper, we construct an explicit stationary solution describing a bound state of two walls. We also demonstrate that stationary complexes of more than two walls do not exist.

متن کامل

Perturbation theory for domain walls in the parametric Ginzburg-Landau equation.

We demonstrate that in the parametrically driven Ginzburg-Landau equation arbitrarily small nongradient corrections lead to qualitative differences in the dynamical properties of domain walls in the vicinity of the transition from rest to motion. These differences originate from singular rotation of the eigenvector governing the transition. We present analytical results on the stability of Isin...

متن کامل

Breaking chirality in nonequilibrium systems on the lattice

We study the dynamics of fronts in parametrically forced oscillating lattices. Using as a prototypical example the discrete Ginzburg-Landau equation, we show that much information about front bifurcations can be extracted by projecting onto a cylindrical phase space. Starting from a normal form that describes the nonequilibrium Ising-Bloch bifurcation in the continuum and using symmetry argumen...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 78 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008